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Big data, GWAS, polygenic risk scores & AI/ML
Big data is a term used to describe extensive and wide data sets that are very intricate, convoluted, multifaceted
and cannot be manually analyzed due to human error. Before big data, information was traditionally stored in
small copious amounts, making it localized to the individual who inputs these datasets into their system [1]. The
principles that define big data can be used in quality improvement under the guise of individual genomic data,
such as the sequencing of DNA, RNA and their characteristics, and are therefore tied to clinical decision-making
in examples such as personalized medicine [2]. Advancements in technology are driving the growth of personalized
medicine, resulting in a parallel expansion of genomic medicine. This expansion aims to enhance individual
diagnostics, ultimately leading to a reduction in personal side effects [3,4]. Previously, we reported the significance
of an integrated approach that combines gene variant and clinical data [5]. We employed analyses of functional
mutations, splice variants, variant distribution and divergence to uncover the importance and prevalence of variants
linked to well-studied genes associated with heart failure (HF) and cardiovascular disease (CVD) [5]. Additionally,
we have conducted comparative studies where we explored gene identification through multi-ethnic and ancestry-
specific studies, how multiple single nucleotide polymorphisms (SNPs) are related to single disease-associated genes,
and the correlation of specific biomarkers to both HF and atrial fibrillation (AF) [6]. To advance cardiovascular
genomic medicine toward a predictive and preventive paradigm, it is imperative to precisely evaluate disease risk,
effectively communicate variant findings, and establish clinical interventions aimed at averting or mitigating the
associated ailments. Through a deep understanding of an individual’s entire genome, we can leverage artificial
intelligence (AI) and machine learning (ML) models to create a more refined approach for managing patients with
CVD.

To understand big data in fields of health professions and research, a consensus for the definition that was
widely accepted was coined by the Health Directorate of the Directorate-General for Research and Innovation at
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the European Commission (EC). A vast array of biological, clinical, environmental, and lifestyle data is collected
from individuals at various time points to highlight their health status leading to the emergence of big data [2,7].
Through the usage of supercomputers, big data is understood to have the capability to recognize various trends and
patterns into digestible knowledge for genomics for disease prediction in the field of precision medicine [3]. The
utilization of big data is further identified to be useful in understanding the pathogenesis of CVD [8]. While big
data offers numerous benefits for advancing genomics in healthcare, and precision medicine, it is also associated
with significant limitations including but not limited to the inability for it to be standardized and transferred
within other databases, claims that it can be “incomplete, inaccurate or missing” [3,8], and the idea that big data
is not user-friendly, meaning that the average clinician would not be able to readily interpret it without training
beforehand, privacy concerns, as well as owning a supercomputer in their practice which can be very expensive,
which therefore leads to more precise techniques practiced using genome-wide association studies (GWAS) [9].

GWAS supports precision medicine by aiding in disease prediction of CVD [9]. GWAS is an observational study
that is used to evaluate single nucleotide variants (SNV) throughout an entire genome in an individual [9,10].
This technology is used to compare the potential risk factors of an individual based on a reference genome and
observe if there are any variants associated with the traits throughout the entire genome [9,10]. Additionally, GWAS
identifies single nucleotide polymorphisms (SNPs) and different phenotypes to further explain CVD heritability.
The significance of the SNVs can be analyzed and weighed to account for the effect of alleles at varied loci within
the genome, which is also known as its linkage disequilibrium [9]. Through the utilization of GWAS, there have
been a multitude of SNVs that can be linked to CVD [11]. By rapidly scanning genetic markers throughout an
individual’s genome, finding those variations can aid in calculating a polygenic risk score (PRS) to make predictions
based on those mutations. Essentially, PRS is the weighted estimate of disease associated SNVs, is used as a tool to
predict common, complex diseases such as CVD [11]. PRS integrates and aggregates the effects of multiple SNPs
and SNVs across the genome into a single composite score to predict disease risk outcomes [11]. The SNPs that
are derived from GWAS are calculated based on the weights of each nucleotide with a specific risk allele in an
individual. PRS can be utilized in predicting drug efficiency, predicting cardiovascular reactions to certain drugs in
individuals, and personalized drug therapy [3,11]. While these state-of-the-art technologies have greatly enhanced
the field of precision medicine, there are some limitations associated with them. GWAS can inadvertently implicate
genes that lack biological relevance to disease predisposition [10]. GWAS reveals additional limitations, including
challenges related to addressing only a portion of missing heritability, difficulty in identifying complex traits, and
pinpointing precise SNVs [10]. PRS has its own set of challenges, primarily in its inherent simplicity [12]. This risk
estimation technique, due to its specificity, struggles to predict complex traits like rare variants in SNPs and exhibits
a limited range of transferability across different populations [11].

AI/ML offers multiple supervised and unsupervised algorithms to analyze genomic data with the potential for
learning from a continuum of dataset displaying heterogeneous levels of granularity. Recently, we have conducted
and published important review studies, where we reported evaluation and comparative analysis of various bioin-
formatics and AI/ML approaches using the genomic data for state-of-the-art statistical and predictive analysis [6,13].
Conclusions of our studies included the support vector machine (SVM) and random forest (RF) as the most applied
and successful AI/ML algorithms in the last few years [13]. Among the frequently employed AI/ML algorithms in
genomics for bioinformatics, statistics and predictive analyses across a broad spectrum of diseases, RF and SVM
stand out. We also established that a multitude of other predictive ML algorithms are also employed but less
utilized including but not limited to artificial neural networks (ANN), k-nearest neighbors (k-NN) and gradient
boosting [13]. Alternative AI/ML approaches exist, however, their adoption for the analysis of multi-genomic data
remains limited. Most of these algorithms do not accommodate unprocessed sequence data for predictive analysis.
Instead, these algorithms employ outcomes derived from enrichment, annotation, and pathway analysis to enable
predictive modeling and risk stratification for variable diseases such as inflammatory bowel disease [14], colon
cancer [15] and hypertension [16].

SVMs demonstrate prowess in managing datasets with a substantial number of features, rendering them apt for
intricate data analyses. Their propensity for mitigating overfitting surpasses that of other ML algorithms, achieved
by skillfully striking an equilibrium between optimizing the margin and reducing classification errors. SVMs boast
versatility, being adaptable to diverse data types encompassing classification, regression and the identification of
outliers. Moreover, SVMs have garnered a reputation for their robust generalization capabilities when faced with
novel, unobserved data, thus endowing them with dependability in predictive modeling scenarios [13]. However,
adjusting SVM hyperparameters is essential to prevent both overfitting and underfitting. Additionally, they may
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exhibit suboptimal performance when dealing with overlapping target classes or when the number of features per
data point exceeds the quantity of training data samples [13]. RF is preferred over SVM when it comes to small
datasets as it can provide predictions without the need for hyperparameter tuning [13]. RF is renowned for its
proficiency in achieving remarkable accuracy across both classification and regression tasks, showcasing its strength
in navigating intricate data relationships. This exceptional performance is fortified by its ensemble composition,
featuring multiple decision trees that collectively diminish the susceptibility to overfitting, a common pitfall in ML.
Through the amalgamation of predictions from these diverse trees, RF effectively reduces variance, consequently
mitigating the peril of overfitting. Moreover, while the interpretability of RF models may not be as immediate as
that of individual decision trees, they still offer valuable insights into feature importance, thereby enriching the
overall interpretability of the model [13].

Gradient boosting and neural networks are also among the commonly used AI/ML algorithms in big data and
predictive analyses for a wide variety of diseases. Deep neural network algorithms like k-NN and ANN are usually
preferred over SVM when it comes to larger datasets [17,18]. This preference is rooted in the fact that these neural
network algorithms are not only capable of handling vast amounts of data but also exhibit superior adaptability
to diverse, high-dimensional data structures [19,20]. Additionally, their inherent ability to capture intricate, non-
linear patterns makes them well-suited for complex real-world applications, including image recognition, natural
language processing and recommendation systems [17,19]. Additionally, gradient boosting is preferred over RF due to
its superior computational efficiency and predictive accuracy [21,22]. It excels in handling large and complex datasets,
as a result of its parallel processing and optimization techniques, resulting in faster training and prediction times.
This algorithm’s superior predictive accuracy stems from its ability to optimize decision trees and combines the
strengths of weak learners to create robust ensemble models, making it particularly suitable for tasks like regression,
classification and ranking that demand precise predictions [23,24]. However, a limitation of neural networks and
gradient boosting ML algorithms is their susceptibility to overfitting [17,22]. These algorithms can be tuned to work
with the smaller and larger datasets, as well as also being implemented in tandem with CVD patients based on certain
subgroups such as their age, gender, race and diagnosis [25]. While different CVD phenotypes such as hypertension,
atherosclerosis, cardiomyopathy and HF can have variable clinical data, multi-genomic data exhibits a sustained
consistency. The issue of data variability can be mitigated by adapting data into a standardized format compatible
with AI/ML models. Recently, we have successfully integrated clinical and genomics data to accurately predict two
separate clinical manifestation of CVDs such as HF and AF based on impactful biomarkers [25]. Additionally, we
have concluded that an integrated approach to analyze multi-genomic, clinical and demographic data presented in
an AI/ML-ready dataset with the combined utilization of a specialized ensemble of AI/ML algorithms will enable
precise predictions regarding disease etiology through the identification of disease-associated biomarkers [26].

Going forward, we need portable AI/ML pipelines integrating genomics and healthcare data for discovering novel
biomarkers and predicting CVD with high accuracy to support clinical diagnostics and decision-making processes.
The potential implication will accelerate our ability to use AI/ML for discoveries and important breakthroughs in
medical and life sciences with broad impact [26,27].
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